

Water Division • 209-498-1458 1910 East University • Fresno, California 93703-2988

December 28, 1994

Mr. Patrick Chan United States Environmental Protection Agency 75 Hawthorne Street San Francisco, California 94105-3901

Dear Mr. Chan:

SUBJECT: SUMMER 1994 LEAD AND COPPER SAMPLING RESULTS

Attached are results of the lead and copper monitoring performed by the City of Fresno during the Summer 1994.

The City of Fresno's sample results did not exceed the action level for lead or copper with the 90th percentile samples.

The City of Fresno's water distribution system continues to be significantly below the EPA's action level for both lead and copper. Accordingly, it is requested that the next round of testing be resumed in the Summer of 1996, to monitor lead and copper for the EPA.

Sincerely,

DEPARTMENT OF PUBLIC UTILITIES

Martin R. McIntyre

Water Systems Manager

Last R. Z

Enclosures

cc: William T. Hetland, Public Utilities Director

Daniel L. Trafican, Assistant Public Utilities Directorl

Cindy Forbes, California Department of Health Services

CITY OF FRESNO WATER DIVISION LEAD AND COPPER RULE COMPLIANCE MONITORING RESULTS OF SUMMER 1994 MONITORING

INTRODUCTION

The United States Environmental Protection Agency (USEPA) promulgated National Primary Drinking Water Regulations for lead and copper monitoring on June 7, 1991, (56 FR26460), commonly referred to as the Lead and Copper Rule. This Rule requires that the City of Fresno monitor the water distribution system from the source to the point of delivery at the consumer's tap. Three specific monitoring protocols are included in the Lead and Copper Rule regulations:

- 1) First draw tap water monitoring for lead and copper
- 2) distribution system monitoring for various water quality parameters, and
- 3) source water monitoring for lead, copper, and various water quality parameters.

For the purposes of the Lead and Copper Rule monitoring requirements, the City of Fresno is classified as a large public water supplier. This classification is based upon the City's 98,000 service connections which supply potable water to some 450,000 customers.

SAMPLE SITE SELECTION

The City of Fresno utilized the same Tier 1-C sample pool of residences which were selected for the initial year of testing. (Two rounds of sampling and analysis for lead and copper were required for 1993 whereas only one round was required for 1994.) Eighteen of these residences were not sampled for 1994; two residents had installed water filtration/softening devices, seven

residents could not be contacted, and nine chose not to participate in this sampling. One resident had moved into another dwelling which met all the criteria for a sample site and was thus added to the sample pool. Samples were collected for 114 sites in the sample pool. Exhibit 1 presents the completed Sample Site Justification/Collection Method Certification form from the Lead and Copper Rule Guidance Manual. The residents performing the tap water sampling are listed in Table 1. Water quality sampling was performed at eight source locations and twenty-five distribution system locations. These water quality sample locations are in the same areas as the tap water sample sites and represent the sources and distribution system for all the tap water sample sites in the Tier 1-C sample pool. The locations of the water quality sample sites are listed in Table 2.

SAMPLE COLLECTION

The City of Fresno collected their 1994 samples in compliance with the Lead and Copper Rule during the period August 27 - September 15, 1994. Residents collecting tap water samples were given written instructions (Exhibit 2) along with their sample bottle.

TAP WATER SAMPLE RESULTS

Table 3 presents the results of the tap water analysis for lead and copper. The table lists the lead and copper concentrations in descending order. This was done in order to determine the 90th percentile levels as required by the Lead and Copper Rule.

Lead Results

The 90th percentile lead level was determined by multiplying the number of samples taken by 0.9

(114 x 0.9 = 103). The 90th percentile lead level for the City of Fresno samples is 0.0025 mg/L which is below the EPA action level of 0.015 mg/L. The laboratory analysis detection limit for lead is the following: values less than 0.001 mg/L are reported as 0 (zero); values between 0.0010 and 0.0049 are reported as 0.0025 mg/L; values greater than 0.005 mg/L are reported directly.

Copper Results

The 90th percentile copper level was determined in the same way as for lead. The 90th percentile copper level for the City of Fresno is 0.29 mg/L which is below the EPA action level of 1.3 mg/L. The laboratory analysis detection limit for copper is the following: values less than 0.01 mg/L are reported as 0 (zero); values between 0.010 and 0.049 mg/L are reported as 0.025 mg/L; values greater than 0.05 mg/L are reported directly.

DISTRIBUTION SYSTEM AND SOURCE SAMPLE RESULTS

Water quality analysis was performed on twenty-five distribution system locations and eight points of entry to the distribution system. The results of this analysis are summarized in Tables 4 and 5.

Both the lead and copper concentrations of the source water at all eight of the sample locations were 0 (zero) mg/L. The laboratory analysis detection limit for both lead and copper have both been previously explained.

FUTURE LEAD AND COPPER MONITORING

Upon completion of the second consecutive year of sampling for the Lead and Copper Rule, the City of Fresno's water distribution system continues to be significantly below the EPA's action level. Accordingly, it is requested that the next round of testing be resumed in the summer of 1996, to monitor lead and copper for the EPA.

94lead

141-A Exhi	bit 1	· ·
SAMPLE	SITE JUSTIFICATION COLLECTION MEXI	DO CENTICATION
System's Name: _	City of Fresno Water Division	Type: XX CWS C HTNCHS
Address:	1910 E. University Ave.	Stat: 10,001 to 100,000
	Fresno, CA 93703	3301 to 10,000
Telephone number	(209) 498-4136	-
System ID #:	10-007	
Contact Person:	Martin R. McIntyre	_
THE RESULTS OF	LEAD AND COPPER TAP WATER SAMPLES MUST B	E ATTACHED TO THIS
# of samples requi	100	names submitted 114
TARGETING CRITI	ERIA ructures with copper pipes with lead solder installed	114
# or sangue-carmey su after 1982 or lea	id pipes and/or lead service lines (Tier 1)	
में जं तार्थी विवासे क्या कोल 1982 जं कि	tectures with copper pipes with lead solder installed at pipes and/or lead service lines (Tier 1)	0
# वर्ग विद्धाविकायुक्त देवतार्थक अरोका 1962 वर्ग किस	iming cooper pipes with lead solder installed in pipes and/or lead service lines (Tier 2)	0
# of sites that conta	ein copper pipes with lead solder installed before 1983 If first condition has been exhausted) (Tier 3)	0
	TOTAL	
Explanation of Tier	2 and Ties 3 sites (attach additional pages if necessary)	
LEAD SERVICE LI		0
	red to be drawn from lead service line sites illy drawn from lead service line sites	. 0
	differences other than zero)	0
Method used to ide	antify lead service line sites (attach additional pages if nec	nesary):

THE RESULTS OF WATER QUALITY PARAMETER (WQP) SAMPLES MUST BE ATTACHED TO THIS COCUMENT

i of samples required to be collected	25
of WQP entry point samples	8

# of WQP top samples actually collected and submitted	25
# of WGP entry point samples a collected and submitted	ctually

SAMPLE SITE JUSTIFICATION COLLECTION METHOD CERTIFICATION

CERTIFICATION OF COLLECTION METHODS

CHUTY WITH

Each first draw tap sample for lead and copper is one there in volume and has stood motionless in the plumbing system of each sampling site for at least six hours.

Each first draw sample collected from a single-family residence has been collected from the cold water kindless has or bettercom sink top.

Each first draw sample collected from a non-residential building has been collected at an interior tap from which water is typically drawn for consumption.

हैं इसे किस-किस क्याक्स क्षांक्य during an annual or therapsi monitoring period has been क्षांक्य के पान गाठाक्रक के प्रकार, प्रकार, प्रकार or September.

Each resident who volunteered to collect tab water samples from his or her home has been properly instructed by insert water system's name; City of Fresno Water Division in the proper methods for collecting lead and copper samples. I do not challenge the accuracy of those sampling results. Enclosed is a copy of the material distributed to residents explaining the proper collection methods, and a list of the residents who performed sampling.

CHANGE OF SAMPLING SITE	M U	
Ongmai site address.		
New site address:	8	
Distance Defined Sites (approximately):		
Targeting Criteria: NEW:	OLD:	•
निकटण कि क्षेत्रकुर (स्थादन क्षेत्रकेशक) ह्या	≋ I necassary) ;	
SIGNATURE That R. L.S.	ter	
Martin R. McIntyre	Water Systems Manager	12-28-94
NAME	TITLE	DATE

DIRECTIONS--RESIDENT TAP SAMPLE COLLECTION PROCEDURES

These samples are being collected to determine the contribution of household fixtures and pipes and/or solder to the lead and copper levels in tap water. This sampling effort is required by the Environmental Protection Agency, and is being accomplished through the cooperation of homeowners and residents. The collection procedure is described in detail below:

- 1. On the day prior to collecting the sample thoroughly clean and remove all debris which may have accumulated inside the aerator of your kitchen tap water faucet. Run the tap for 1-2 minutes after cleaning so that no loose debris will impact sampling process.
- 2. <u>Do not use any water for 6-8 hours on your premises prior to sampling.</u> The Water Division recommends that either early mornings (after awakening) or early evenings (after returning from work) are the best sampling times to ensure that the proper water conditions exist.
- 3. The primary kitchen cold water faucet is to be used for sampling. The sample must be 100% from the cold water side of the tap; it can not be a mixture of water "dialed" from both hot and cold service lines. Place the open sample bottle below the faucet and gently open the cold water tap. Slowly fill the sample bottle to the base of the neck and turn off the water. It should take 45-60 seconds to fill the sample bottle.
- 4. Tightly cap the sample bottle and place in the plastic bag provided. Fill in the information requested below; sign the form and place in the plastic bag with the sample bottle. Please review the address label below at this time to ensure that all information contained on the label is correct.
- 5. Place the sample outside your home for pick-up by 9:00 AM.
- 6. Results from this monitoring effort will be provided to participating customers when reports are generated for the Environmental Protection Agency.

Please call Bill Dunn at 498-4136 if you have any questions regarding these instructions. TO BE COMPLETED BY RESIDENT AND RETURNED WITH SAMPLE:

Water was last used:	TIME	DATE
Sample was collected:	TIME	DATE
I have read the above directions and l	have taken a tap sample in	accordance with these directions.
PRINTED NAME SIGNATURE PHONE		
TO BE COMPLETED BY WATER Sample picked up byh:\prd\sproj\wq\lead\94sample.wp		Date

TABLE 2 - Water Quality Parameter Sample Locations

Type of Location	System Identification Number	Location
Source	W-79	(b) (9)
Source	W-86	
Source	W-91	
Source	W-97	
Source	W-99	
Source	W-131	
Source	W-140	
Source	W-KVDS	Sidemoterio di Giorna
Distribution	D-31	(b) (6)
Distribution	D-34	
Distribution	D-36	
Distribution	D-66	
Distribution	D-68	
Distribution	D-69	
Distribution	D-70	
Distribution	D-76	
Distribution	D-79	
Distribution	D-81	
Distribution	D-82	
Distribution	D-116	
Distribution	D-117	
Distribution	D-126	
Distribution	D-128	
Distribution	D-129	
Distribution	D-130	
Distribution	D-133	
Distribution	D-134	
Distribution	D-155	
Distribution	D-156	
Distribution	D-158	
Distribution	D-159	
Distribution	D-181	
Distribution	D-202	

Table 3 - TAP WATER SAMPLE ANALYSIS - SUMMER 1994

Sample		Lead	Lead
No.		Ranking	mg/L
110.		manning	mg/L
154		132	0.012
4		131	0.006
132		130	0.006
135		129	0.006
93		128	0.005
175		127	0.005
1		126	0.003
2		125	0.003
11		124	0.003
46		123	0.003
56		122	0.003
65		121	0.003
74		120	0.003
75		119	0.003
78		118	0.003
90		117	0.003
92		116	0.003
102		115	0.003
109		114	0.003
116		113	0.003
117		112	0.003
119		111	0.003
127		110	0.003
133		109	0.003
136		108	0.003
148		107	0.003
149		106	0.003
152		105	0.003
155		104	0.003
157	90th	103	0.003
163		102	0.003
166		101	0.003
171		100	0.003
176		99	0.003
200		98	0.003
3		97	0.000
10		96	0
20		95	0
21		94	0
25		93	0
26		92	0
30		91	0
36		90	0
39		89	0
40		88	0
43		87	0
50		86	0
51		85	0

Table 3 - TAP WATER SAMPLE ANALYSIS - SUMMER 1994

52	84	0
54	83	0
55	82	0
57	81	0
58	80	0
60	70	0
	79	0
61 62	77	0
63	79 78 77 76 75 74 73 72	0
63	76	0
64 66	75	
66	74	0
67	73	0
69	72	0
71 76	71	0
76	70	0
79	69	0
80	68 67	0
81	67	0
83	66	0
84	65	0
86	64	0
87	63	0
88	62	0
95	61	0
98	60	0
100	59	0
105 110 111 112	58	0
110	57	0
111	56	0
112	55	0
113	54	0
114	53	0
115	52	0
118	51	0
120	50	0
122	49	0
124	48	0
125	47	0
126	46	0
129	45	0
130	44	0
131	43	0
134	42	0
137	41	0
139	40	0
140	39	0
140		
141	38	0
142	37	
143	36	0
144	35	0
145	34	0

Table 3 - TAP WATER SAMPLE ANALYSIS - SUMMER 1994

147	33	0
150	32	0
150 151	31	0
153	30	0
156	29	0
158	29 28	0
159 161	27 26	0
161	26	0
164	25	0
165	24	0
167	23	0
168	25 24 23 22	0
169	21 20	0
170	20	0
174	19	0
170 174 18 27	19 18 17 16	
27	17	
38	16	
41	15 14 13 12	
42	14	
48	13	
53	12	
72	11	
89	11 10	
91	9	
103	9 8	
107	7	
108	6	
123	5	
128	4	
146	3	
172	2	
173	1	

TABLE 3 - TAP WATER SAMPLE ANALYSIS - SUMMER 1994

Sample	Copper	Copper
No.	Ranking	mg/L
140.	Kanking	IIIg/L
153	132	0.72
137	131	0.54
166	130	0.54
176	129	0.49
155	128	0.47
50	127	0.45
133	126	0.45
81	125	0.43
175	124	0.43
150	123	0.42
200	122	0.42
143	121	0.4
174	120	0.39
148	119	0.37
152	118	0.37
92	117	0.36
151	116	0.36
156	115	0.36
171	114	0.36
132	113	0.34
10	112	0.32
90	111	0.32
168	110	0.32
169	109	0.32
127	108	0.31
129	107	0.31
159	106	0.31
88	105	0.3
145	104	0.3
130	103	0.29
2	102	0.28
115	101	0.28
142	100	0.28
149	99	0.28
136	98	0.27
26	97	0.26
51	96	0.26
102	95	0.26
65	94	0.25
135	93	0.25
1	92	0.24
83	91	0.24
164	90	0.24
139	89	0.23
46	88	0.23
78	87	0.22
79	86	0.22
93	85	0.22
30		U.ZZ

TABLE 3 - TAP WATER SAMPLE ANALYSIS - SUMMER 1994

163	84	0.22
167	83	0.22
30	82	0.21
134	81	0.21
170	80	0.21
39	79	0.2
43	78	0.2
54	77	0.2
100	76	0.2
147	75	0.2
161	74	0.2
67	73	0.19
80	72	0.19
109	71	0.19
112	70	0.19
21	69	0.18
55	68	0.18
117	67	0.18
157	66	0.18
165	65	0.18
58	64	0.17
62	63	0.17
76	62	0.17
113	61	0.17
124	60	0.17
11	59	0.16
64	58	0.16
71	57	0.16
114	56	0.16
125	55	0.16
20	54	0.15
52	53	0.15
98	52	0.15
110	51	0.15
66	50	0.14
95	49	0.14
141	48	0.14
63	47	0.13
74	46	0.13
86	45	0.13
158	44	0.13
25	43	0.12
56	42	0.12
75	41	0.12
111	40	0.12
144	39	0.12
87	38	0.12
	37	0.11
119		
126	36	0.11
40	35	0.1
122	34	0.085

TABLE 3 - TAP WATER SAMPLE ANALYSIS - SUMMER 1994

36	33	0.08
61	32	0.08
120	31	0.073
4	30	0.07
131	29	0.07
57	28	0.068
3	27	0.062
69	26	0.06
60	25	0.025
84	24	0.025
105	23	0.025
116	22	0.025
118	21	0.025
140	20	0.025
154	19	0.025
18 27	18 17	
27		
38	16	
41	15	
42	14	
48	13	
53	12	
72	11	
89	10	
91	9	
103	8	
107	7	
108	6	
123	5	
128	4	
146	3	
172	2	
173	1	

TABLE 4 - DISTRIBUTION SYSTEM WATER QUALITY ANALYSIS Samples Taken 09/09/94 - 09/12/94

Sample	Alkalinity	Calcium		Temp.	Cond
No.	(mg/L CaCO3)	(mg/l)	ph	(deg C)	(mS/cm)
D-31	130	24	7.28	22.4	0.28
D-34	85	17	7.52	25.2	0.2
D-36	100	24	7.39	24.1	0.27
D-66	93	20	7.25	25.1	0.23
D-68	120	24	7.26	24.8	0.27
D-69	120	24	7.02	23.3	0.27
D-70	95	20	7.16	24.8	0.22
D-76	120	26	7.13	25.1	0.27
D-79	95	21	7.28	21.7	0.24
D-81	100	22	7.27	26.1	0.25
D-82	97	19	7.25	24.9	0.23
D-116	110	24	6.92	26.7	0.28
D-117	110	21	7.12	26.1	0.23
D-126	95	20	7.23	24.7	0.22
D-128	170	32	7	23.7	0.37
D-129	99	21	7.32	24.9	0.25
D-130	130	25	7.29	25.9	0.28
D-133	89	17	7.48	22.9	0.21
D-134	83	18	7.45	24.9	0.22
D-155	85	17	7.15	24.3	0.2
D-156	140	27	7.01	24.1	0.33
D-158	150	28	7	24.9	0.33
D-159	150	30	6.98	25.8	0.34
D-181	85	17	7.28	23.8	0.2
D-202	140	38	7.1	23.2	0.41
Average	111.64	23.04	7.21	24.5	0.26
Average	111.04	23.04	1.21	24.5	0.20
Minimum	83	17	6.92	21.7	0.2
Maximum	170	38	7.52	26.7	0.41

TABLE 5. SOURCE WATER QUALITY ANALYSIS Samples Taken 09/16/94

Sample	Lead	Copper	Alkalinity	Calcium		Temp.	Cond.
No.	(mg/L)	(mg/l)	(mg/L CaCO3)	(mg/L)	рН	(deg C)	(mS/cm)
W-79	0	0	120	26	7.38	22	0.3
W-86	0	0	130	28	7.35	22.7	0.3
W-91	0	0	100	22	7.53	21.9	0.25
W-97	0	0	130	28	7.36	22.5	0.32
W-99	0	0	87	17	7.73	22.5	0.22
W-131	0	0	99	19	7.76	24	0.22
W-140	0	0	120	39	7.15	23.9	0.45
WKVDS	0	0	100	25	7.42	23	0.25
Average	0	0	110.75	25.5	7.46	22.81	0.289
Minimum	0	0	87	17	7.15	21.9	0.22
Maximum	0	0	130	39	7.76	24	0.45

CITY OF FRESNO WATER DIVISION LEAD AND COPPER RULE COMPLIANCE MONITORING RESULTS OF SUMMER 1994 MONITORING

INTRODUCTION

The United States Environmental Protection Agency (USEPA) promulgated National Primary Drinking Water Regulations for lead and copper monitoring on June 7, 1991 (56 FR26460) commonly referred to as the Lead and Copper Rule. This Rule requires that the City of Fresno monitor the water distribution system from the source to the point of delivery at the consumer's tap. Three specific monitoring protocols are included in the Lead and Copper Rule regulations:

- 1) First draw tap water monitoring for lead and copper
- 2) distribution system monitoring for various water quality parameters, and
- 3) source water monitoring for lead, copper, and various water quality parameters.

For the purposes of the Lead and Copper Rule monitoring requirements, the City of Fresno is classified as a large public water supplier. This classification is based upon the City's 98,000 service connections which supply potable water to some 450,000 customers.

SAMPLE SITE SELECTION

The City of Fresno utilized the same Tier 1-C sample pool of residences which were selected for the initial year of testing,. (Two rounds of sampling and analysis for lead and copper were required for 1993 whereas only one round was required for 1994.) Eighteen of these residences were not sampled for 1994; two residents had installed water filtration/softening devices, seven

residents could not be contacted, and nine chose not to participate in this sampling. One resident had moved into another dwelling which met all the criteria for a sample site and was thus added to the sample pool. Samples were collected for 114 sites in the sample pool. Exhibit 1 presents the completed Sample Site Justification/Collection Method Certification form from the Lead and Copper Rule Guidance Manual. The residents performing the tap water sampling are listed in Table 1. Water quality sampling was performed at eight source locations and twenty-five distribution system locations. These water quality sample locations are in the same areas as the tap water sample sites and represent the sources and distribution system for all the tap water sample sites in the Tier 1-C sample pool. The locations of the water quality sample sites are listed in Table 2.

SAMPLE COLLECTION

The City of Fresno collected their 1994 samples in compliance with the Lead and Copper Rule during the period August 27 - September 15, 1994. Residents collecting tap water samples were given written instructions (Exhibit 2) along with their sample bottle.

TAP WATER SAMPLE RESULTS

Table 3 presents the results of the tap water analysis for lead and copper. The table lists the lead and copper concentrations in descending order. This was done in order to determine the 90th percentile levels as required by the Lead and Copper Rule.

Lead Results

The 90th percentile lead level was determined by multiplying the number of samples taken by 0.9

(114 x 0.9 = 103). The 90th percentile lead level for the City of Fresno samples is 0.0025 mg/L which is below the EPA action level of 0.015 mg/L. The laboratory analysis detection limit for lead is the following: Values less than 0.001 mg/L are reported as 0 (zero); values between 0.0010 and 0.0049 are reported as 0.0025 mg/L; values greater than 0.005 mg/L are reported directly.

Copper Results

The 90th percentile copper level was determined in the same way as for lead. The 90th percentile copper level for the City of Fresno is 0.29 mg/L which is below the EPA action level of 1.3 mg/L. The laboratory analysis detection limit for copper is the following: Values less than 0.01 mg/L are reported as 0 (zero); values between 0.010 and 0.049 mg/L are reported as 0.025 mg/L; values greater than 0.05 mg/L are reported directly.

DISTRIBUTION SYSTEM AND SOURCE SAMPLE RESULTS

Water quality analysis was performed on twenty-five distribution system locations and eight points of entry to the distribution system. The results of this analysis are summarized in Tables 4 and 5.

Both the lead and copper concentrations of the source water at all eight of the sample locations were 0 (zero) mg/L. The laboratory analysis detection limit for both lead and copper have both been previously explained.

FUTURE LEAD AND COPPER MONITORING

Upon completion of the second consecutive year of sampling for the Lead and Copper Rule, the City of Fresno's water distribution system continues to be significantly below the EPA's action level. Accordingly, it is requested that a third-round of testing be resumed in the summer of 1995, to monitor lead and copper for the EPA

94lead

		Lead	Sample	Lead
Tract		Ranking	No.	mg/L
b		132	154	0.012
f		131	4	0.006
b		130	132	0.006
b		129	135	0.006
d		128	93	0.005
b		127	175	0.005
а		126	1	0.0025
а		125	2	0.0025
b		124	11	0.0025
d		123	46	0.0025
С		122	56	0.0025
d		121	65	0.0025
С		120	74	0.0025
d		119	75	0.0025
С		118	78	0.0025
d		117	90	0.0025
d		116	92	0.0025
С		115	102	0.0025
С		114	109	0.0025
d		113	116	0.0025
d		112	117	0.0025
d		111	119	0.0025
b		110	127	0.0025
b		109	133	0.0025
b		108	136	0.0025
b		107	148	0.0025
b		106	149	0.0025
b		105	152	0.0025
b		104	155	0.0025
b	90th %	103	157	0.0025
d	00111 70	102	163	0.0025
b		101	166	0.0025
b		100	171	0.0025
<u>b</u>		99	176	0.0025
b		98	200	0.0025
a		97	3	0.0023
a		96	10	0
d		95	20	0
e		94	21	0
C		93	25	0
d		92	26	0
		91	30	0
C		90	36	
C				0
d		89	39	0
C		88	40	0
d	L	87	43	0

	Lead	Sample	e Lead
Tract	Ranki		mg/L
Trace	Runki	ing ivo.	
d	86	50	0
e	85	51	0
C	84	52	0
е	83	54	0
d	82	55	0
С	81	57	0
С	80	58	0
С	79	60	0
С	78	61	0
С	77	62	0
С	76	63	0
е	75	64	0
С	74	66	0
e	73	67	0
С	72	69	0
С	71	71	0
d	70	76	0
С	69	79	0
е	68	80	0
е	67	81	0
е	66	83	0
d	65	84	0
С	64	86	0
С	63	87	0
d	62	88	0
е	61	95	0
С	60	98	0
С	59	100	0
С	58	105	0
С	57	110	0
С	56	111	0
С	55	112	0
е	54	113	0
d	53	114	0
d	52	115	0
d	51	118	0
d	50	120	0
С	49	122	0
С	48	124	0
С	47	125	0
С	46	126	0
b	45	129	0
b	44	130	0
b	43	131	0
b	42	134	0
b	41	137	0
		107	

Lead Sample Ranking No. b 40 139 0 b 39 140 0 b 38 141 0 b 37 142 0 b 36 143 0 f 35 144 0 b 34 145 0 b 33 147 0 b 32 150 0 b 31 151 0 b 30 153 0 f 28 158 0 f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	Lead mg/L
b 39 140 0 b 38 141 0 b 37 142 0 b 36 143 0 f 35 144 0 b 34 145 0 b 33 147 0 b 32 150 0 b 31 151 0 b 30 153 0 b 29 156 0 f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
b 39 140 0 b 38 141 0 b 37 142 0 b 36 143 0 f 35 144 0 b 34 145 0 b 33 147 0 b 32 150 0 b 31 151 0 b 30 153 0 f 28 158 0 f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
b 38 141 0 b 37 142 0 b 36 143 0 f 35 144 0 b 34 145 0 b 33 147 0 b 32 150 0 b 31 151 0 b 30 153 0 b 29 156 0 f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
b 37 142 0 b 36 143 0 f 35 144 0 b 34 145 0 b 33 147 0 b 32 150 0 b 31 151 0 b 30 153 0 b 29 156 0 f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
b 36 143 0 f 35 144 0 b 34 145 0 b 33 147 0 b 32 150 0 b 31 151 0 b 30 153 0 b 29 156 0 f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
f 35 144 0 b 34 145 0 b 33 147 0 b 32 150 0 b 31 151 0 b 30 153 0 b 29 156 0 f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
b 34 145 0 b 33 147 0 b 32 150 0 b 31 151 0 b 30 153 0 b 29 156 0 f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
b 33 147 0 b 32 150 0 b 31 151 0 b 30 153 0 b 29 156 0 f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
b 32 150 0 b 31 151 0 b 30 153 0 b 29 156 0 f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
b 31 151 0 b 30 153 0 b 29 156 0 f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
b 30 153 0 b 29 156 0 f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
b 29 156 0 f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
f 28 158 0 b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
b 27 159 0 b 26 161 0 e 25 164 0 c 24 165 0	
b 26 161 0 e 25 164 0 c 24 165 0	
e 25 164 0 c 24 165 0	
c 24 165 0	
b 23 167 0	
b 22 168 0	
b 21 169 0	
b 20 170 0	
b 19 174 0	
b 18 18	
e 17 27	
c 16 38	
e 15 41	
e 14 42	
e 13 48	
c 12 53	
d 11 72	
c 10 89	
c 9 91	
c 8 103	
e 7 107	
c 6 108	
c 5 123	
b 4 128	
b 3 146	
b 2 172	
b 1 173	
	appropriate and the second

8		Copper	Sample	Copper
Tract		Ranking	No.	mg/L
b		132	153	0.72
b		131	166	0.54
b		130	137	0.54
b		129	176	0.49
b		128	155	0.47
b		127	133	0.45
d		126	50	0.45
е		125	81	0.44
b		124	175	0.43
b		123	200	0.42
b		122	150	0.42
b		121	143	0.4
b		120	174	0.39
b		119	148	0.37
b		118	152	0.37
d		117	92	0.36
b		116	171	0.36
b		115	151	0.36
b		114	156	0.36
b		113	132	0.34
d		112	90	0.32
а		111	10	0.32
b		110	168	0.32
b		109	169	0.32
b		108	127	0.31
b		107	129	0.31
b		106	159	0.31
d		105	88	0.3
b		104	145	0.3
b	90th %	103	130	0.29
а		102	2	0.28
b		101	149	0.28
d		100	115	0.28
b		99	142	0.28
b		98	136	0.27
С		97	102	0.26
d		96	26	0.26
е		95	51	0.26
b		94	135	0.25
d		93	65	0.25
а		92	1	0.24
е		91	83	0.24
е		90	164	0.24
b		89	139	0.23
d		88	93	0.22
d	***************************************	87	46	0.22

Copper	Sample	Copper
		mg/L
86	78	0.22
85		0.22
		0.22
		0.22
		0.21
		0.21
		0.21
79		0.2
		0.2
77	54	0.2
76	100	0.2
75	147	0.2
74	161	0.2
73		0.19
72		0.19
71	80	0.19
70		0.19
69	117	0.18
68	157	0.18
67	21	0.18
66	55	0.18
65	165	0.18
64	58	0.17
63	62	0.17
62	76	0.17
61	113	0.17
60	124	0.17
59	11	0.16
58	64	0.16
57	71	0.16
56	114	0.16
55	125	0.16
54	20	0.15
53	52	0.15
52	98	0.15
51	110	0.15
50	66	0.14
49	95	0.14
48	141	0.14
47	74	0.13
46	63	0.13
45	86	0.13
44	158	0.13
43	56	0.12
42	75	0.12
41	25	0.12
	85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42	Ranking No. 86 78 85 163 84 79 83 167 82 30 81 134 80 170 79 39 78 43 77 54 76 100 75 147 74 161 73 109 72 67 71 80 70 112 69 117 68 157 67 21 66 55 65 165 64 58 63 62 62 76 61 113 60 124 59 11 58 64 57 71 56 114 55 125 54 20

	Copper	Sample	Copper
Tract	Ranking	No.	mg/L
С	40	111	0.12
f	39	144	0.12
d	38	119	0.11
С	37	87	0.11
С	36	126	0.11
С	35	40	0.1
С	34	122	0.085
С	33	36	0.08
С	32	61	0.08
d	31	120	0.073
f	30	4	0.07
b	29	131	0.07
С	28	57	0.068
а	27	3	0.062
С	26	69	0.06
b	25	154	0.025
d	24	116	0.025
С	23	60	0.025
d	22	84	0.025
С	21	105	0.025
d	20	118	0.025
b	19	140	0.025
b	18	18	0.020
e	17	27	
С	16	38	
е	15	41	
e	14	42	
e	13	48	
С	12	53	
d	11	72	
С	10	89	
С	9	91	
С	8	103	
e	7	107	
C	6	108	
С	5	123	
b	4	128	
b	3	146	
b	2	172	
b	1	173	
- J		173	
			L

	TABLE		BUTION SY ples Taken		TER QUALI 09/12/94	TY ANALY	'SIS	
Sample	Alkalinity	Calcium		Temp.	Cond			T
No.	(mg/L CaCO3)	(mg/l)	ph	(deg C)	(mS/cm)			
D-31	130	24	7.28	22.4	0.28			
D-34	85	17	7.52	25.2	0.20			
D-36	100	24	7.39	24.1	0.27			1
D-66	93	20	7.25	25.1	0.23			1
D-68	120	24	7.26	24.8	0.27			-
D-69	120	24	7.02	23.3	0.27			
D-70	95	20	7.16	24.8	0.22			
D-76	120	26	7.13	25.1	0.27			-
D-79	95	21	7.28	21.7	0.24			
D-81	100	22	7.27	26.1	0.25			
D-82	97	19	7.25	24.9	0.23		-	
D-116	110	24	6.92	26.7	0.28			
D-117	110	21	7.12	26.1	0.23			
D-126	95	20	7.12	24.7	0.23			
D-128	170	32	7.23	23.7	0.22			
D-129	99	21	7.32	24.9	0.25			
D-130	130	25	7.29	25.9	0.28			
D-133	89	17	7.48	22.9	0.21			
D-134	83	18	7.45	24.9	0.22			
D-155	85	17	7.15	24.3	0.2			
D-156	140	27	7.13	24.1	0.33		<u> </u>	1
D-158	150	28	7.01	24.9	0.33			
D-159	150	30	6.98	25.8	0.34			
D-181	85	17	7.28	23.8	0.2			
D-202	140	38	7.1	23.2	0.41			
					0.11			_
Average	111.64	23.04	7.21	24.5	0.26			
Minimum	83	17	6.92	21.7	0.2			
Maximum	170	38	7.52	26.7	0.41			
								1

		TABLE	5. SOURCE W.			YSIS		
Sample	Lead	Copper	Alkalinity	Calcium	-11	Temp.	Cond.	
No. W-79	(mg/L) 0	(mg/l) 0	(mg/L CaCO3) 120	(mg/L) 26	рН 7.38	(deg C) 22	(mS/cm) 0.3	
W-79 W-86	0	0	130	28	7.35	22.7	0.3	
W-91	0	0	100	22	7.53	21.9	0.25	
W-97	0	0	130	28	7.36	22.5	0.32	
W-99	0	0	87	17	7.73	22.5	0.22	
W-131	0	0	99	19	7.76	24	0.22	
W-140	0	0	120	39	7.15	23.9	0.45	
WKVDS	0	0	100	25	7.42	23	0.25	
			100		7.72	20	0.20	
Average	0	0	110.75	25.5	7.46	22.81	0.289	
Minimum	0	0	87	17	7.15	21.9	0.22	
Maximum	0	0	130	39	7.76	24	0.45	

Sheet1

Source	W-79	(b) (9)
Source	W-86	
Source	W-91	
Source	W-97	
Source	W-99	
Source	W-131	
Source	W-140	
Source	W-KVDS	
Distribution	D-31	(b) (6)
Distribution	D-34	
Distribution	D-36	
Distribution	D-66	
Distribution	D-68	
Distribution	D-69	
Distribution	D-70	
Distribution	D-76	
Distribution	D-79	
Distribution	D-81	
Distribution	D-82	
Distribution	D-116	
Distribution	D-117	
Distribution	D-126	
Distribution	D-128	
Distribution	D-129	
Distribution	D-130	
Distribution	D-133	
Distribution	D-134	
Distribution	D-155	
Distribution	D-156	
Distribution	D-158	
Distribution	D-159	
Distribution	D-181	
Distribution	D-202	

DISTRIBUTION & WELL SAMPLE FIELD LOG

LOCATION: D-202 (W-## = WELL SITE)

(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = E.C

Date = 9 - 9 - 9 = 12.00

pH = 7.10

Temp. = 23.2 deg C

Conductivity = /// mS/cm

LOCATION: (W-## = WELL SITE)
(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = ______

Date = 9-9-94 Time = 12.30

pH = 7.32

Temp. = 24.9 deg C

Conductivity = $\sqrt{25}$ mS/cm

LOCATION: D-181 (W-## = WELL SITE)

(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = EC

Date = 9-9-94 Time = 12-50

pH = 7,28

Temp. = 23.8 deg C

Conductivity = $\frac{120}{120}$ mS/cm

DISTRIBUTION & WELL SAMPLE FIELD LOG

LOCATION: <u>D-156</u> (W-## = WELL SITE)

(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = EC

Date = 9-9-94 Time = 1.50

pH = 7.01

Temp. = $24 \cdot 1$ deg C

Conductivity = $\frac{33}{130}$ mS/cm

LOCATION: D -158 (W-## = WELL SITE)
(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = EC

Date = 9-9-94 Time = 2:05

pH = 1,00

Temp. = 24.9 deg C

Conductivity = 133 mS/cm

LOCATION: D-159 (W-## = WELL SITE)
(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = E.C.

Date = 9-999 Time = 2.25

pH = 6,98

Temp. = 25.8 deg C

Conductivity = 34 mS/cm

DISTRIBUTION & WELL SAMPLE FIELD LOG

LOCATION:. <u>D-155</u>	(W-## = WELL SITE) (D-## = DISTRIBUTION SYSTEM SITE)
Samplers Initials =	EC
Date =	9 - 9 - 94 Time = 2.40
pH =	7.15
Temp. =	24.3 deg C
Conductivity =	<u>*20</u> mS/cm
LOCATION: D68	(W-## = WELL SITE) (D-## = DISTRIBUTION SYSTEM SITE)
Samplers Initials =	EC
Date =	9-9-94 Time = 2.55
1	7.26
V05450 V00500 • NNV	24.8 deg C
Conductivity =	,27 mS/cm
LOCATION:	(W-## = WELL SITE) (D-## = DISTRIBUTION SYSTEM SITE)
Samplers Initials =	
Date =	Time =
pH =	
Temp. =	deg C
Conductivity =	mS/cm

DISTRIBUTION & WELL SAMPLE FIELD LOG

LOCATION: 0.36 (W-## = WELL SITE)

(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = E.C.

Date = $\frac{9/9/94}{}$ Time = $\frac{8:35}{}$

pH = 7.39

Temp. = $\frac{241}{100}$ deg C

Conductivity = £27 mS/cm

LOCATION: D-133 (W-## = WELL SITE)
(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = EC

Date = 9/9/94 Time = 8/55

pH = 7.48

Temp. = 22.9 deg C

Conductivity = $\frac{2!}{mS/cm}$ mS/cm

LOCATION: $D \rightarrow 3$ (W-## = WELL SITE) (D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = € C

Date = 9-9-94 Time = 9:15

24, C = Ha

Temp. = 24.9 deg C

Conductivity = , 22 mS/cm

DISTRIBUTION & WELL SAMPLE FIELD LOG

LOCATION: <u>D~/26</u>	(W-## = WELL SITE) (D-## = DISTRIBUTION SYSTEM SITE)
Samplers Initials =	EL
Date =	9-12-94 Time = 12:30
pH =	7.23
Temp. =	24.7 deg C
Conductivity =	<u>,22</u> mS/cm
LOCATION: <u>D-130</u>	(W-## = WELL SITE) (D-## = DISTRIBUTION SYSTEM SITE)
Samplers Initials =	EC
Date =	9-12-94 Time = 1.15
рН =	7.29
	25,9 deg C
Conductivity =	, 28 mS/cm
LOCATION:	(W-## = WELL SITE) (D-## = DISTRIBUTION SYSTEM SITE)
Samplers Initials =	
Date =	Time =
pH =	
Temp. =	deg C
Conductivity =	mS/cm

DISTRIBUTION & WELL SAMPLE FIELD LOG

LOCATION: $D^{-1/7}$ (W-## = WELL SITE)

(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = <u>FC</u>

Date = 9-12-94 Time = 10:40

pH =), 12

Temp. = 26.1 deg C

Conductivity = 23 mS/cm

LOCATION: (W-## = WELL SITE)
(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = £.C

Date = 9 - 12 - 94 Time = 11.00

pH = 7/16

Temp. = 24.8 deg C

Conductivity = 22 mS/cm

LOCATION: 0.76 (W-## = WELL SITE) (D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = __E_C

Date = 9 - 12 - 91 Time = 11 - 91

pH = 7,13

Temp. = $\frac{25}{1}$ deg C

Conductivity = 1 mS/cm

FRESNO LEAD & COPPER RULE

DISTRIBUTION & WELL SAMPLE FIELD LOG

LOCATION: $\sqrt{)-9}$ (W-## = WELL SITE)

(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = <u>EC</u>

Date = 9 - 12 - 94 Time = 9.20

pH = 1, 28

Temp. = 21.7 deg C

Conductivity = 24 mS/cm

LOCATION: (W-## = WELL SITE)
(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = EC

Date = 9-12-91 Time = 10:00

pH = 6.92

Temp. = 26.7 deg C

Conductivity = $\frac{128}{m}$ mS/cm

LOCATION: D-69 (W-## = WELL SITE)
(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = E

Date = 9-12-94 Time = 10.26

-COIN = Ha

Temp. = $\frac{3}{3}$ deg C

Conductivity = mS/cm

FRESNO LEAD & COPPER RULE

DISTRIBUTION & WELL SAMPLE FIELD LOG

LOCATION: D-82 (W-## = WELL SITE)

(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = EC

Date = 9-9-94 Time = 10.15

pH = 7.25

Temp. = 24.9 deg C

Conductivity = $\frac{123}{m}$ mS/cm

LOCATION: (W-## = WELL SITE)
(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = EC

Date = 9 - 9 - 94 Time = 10.45

pH = 1,25

Temp. = $26 \cdot l \text{ deg C}$

Conductivity = $\frac{25}{m}$ mS/cm

LOCATION: D-34 (W-## = WELL SITE)

(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials =

Date = 9 - 9 - 94 Time = 11:45

pH = 7.52

Temp. = 25.2 deg C

Conductivity = 100 mS/cm

FRESNO LEAD & COPPER RULE

DISTRIBUTION & WELL SAMPLE FIELD LOG

LOCATION: D66 (W-## = WELL SITE)

(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = EC

Date = 9 - 9 - 94 Time = 1:10

pH = 7.25

Temp. = 25.1 deg C

Conductivity = 123 mS/cm

LOCATION: D-3 / (W-## = WELL SITE)
(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = E.C.

Date = 9 - 9 - 99 Time = 1, 25

pH = 7,28

Temp. = 22.4 deg C

Conductivity = $\frac{128}{128}$ mS/cm

LOCATION: D-128 (W-## = WELL SITE)
(D-## = DISTRIBUTION SYSTEM SITE)

Samplers Initials = E

Date = 9-9-94 Time = 1:40

pH = 7,00

Temp. = 23.7 deg C

Conductivity = $\frac{130}{130}$ mS/cm

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942684

Lab ID Number

: 2684-4

Project Number

: None

Sample Description: D-82

Date Sampled

: 09/09/94

Time Sampled

: 1015

Date Received

: 09/09/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	97	mg/L	1 0.1
EPA 6010	Calcium (Ca)	19	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

μmhos/cm: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman, QA/QC Supervisor

Jeffrey J. Koelewyn, Inorganics Manager

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942684

Lab ID Number

: 2684-5

Project Number

: None

Sample Description: D-81

Date Sampled

: 09/09/94

Time Sampled

: 1045

Date Received

: 09/09/94

Report Reissue Date: 11/02/94

.... 11/02

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	100	mg/L	0.1
EPA 6010	Calcium (Ca)	22	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

 $\mu \mathrm{mhos/cm} \colon \mathrm{Micromhos} \ \mathrm{per} \ \mathrm{Centimeter} \ \mathrm{at} \ 25\,^{\circ}\mathrm{C}$

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman QA/QC Supervisor

of ly), / Towww #ffrem of Koelewyn, Inorganics Manager

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942684

Lab ID Number

: 2684-6

Project Number

: None

Sample Description: D-34

Date Sampled : 09/09/94

Time Sampled : 1145

Date Received : 09/09/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	85	mg/L	1
EPA 6010	Calcium (Ca)	17	mg/L	

ND: None Detected

mg/L: Milligrams per Liter

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

μmhos/cm: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman, QA/QC Supervisor

BSK LABORATORIES

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942684

Lab ID Number

: 2684-7

Project Number

: None

Sample Description: D-202

Date Sampled

: 09/09/94

Time Sampled

: 1200

Date Received

: 09/09/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	140	mg/L	1
EPA 6010	Calcium (Ca)	38	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

 $\mu \mathrm{mhos/cm}\colon \mathrm{Micromhos}\ \mathrm{per}\ \mathrm{Centimeter}\ \mathrm{at}\ 25^{\circ}\mathrm{C}$

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman, QA/QC Supervisor

Jefffrey J. Koelewyn, Inorganics Manager

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942684

Lab ID Number

: 2684-8

Project Number

: None

Sample Description: D-129

Date Sampled : 09/09/94

Time Sampled : 1230

Date Received : 09/09/94 Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	99	mg/L	1
EPA 6010	Calcium (Ca)	21	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

 μ mhos/cm: Micromhos per Centimeter at 25°C Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman,

. Koelewyn, Inorganics Manager

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942684

Lab ID Number

: 2684-9

Project Number

: None

Sample Description: D-181

Date Sampled : 09/09/94 : 1250

Time Sampled

: 09/09/94

Date Received Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	85	mg/L	0.1
EPA 6010	Calcium (Ca)	17	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

 μ mhos/cm: Micromhos per Centimeter at 25°C Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman, QA/QC Supervisor

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942684

Lab ID Number

: 2684-10

Project Number

: None

Sample Description: D-66

Date Sampled : 09/09/94

Time Sampled : 1310

Date Received : 09/09/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	93	mg/L	1
EPA 6010	Calcium (Ca)	20	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

 $\mu \mathrm{mhos/cm} \colon \mathrm{Micromhos} \ \mathrm{per} \ \mathrm{Centimeter} \ \mathrm{at} \ 25^{\circ}\mathrm{C}$

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman, QA/QC Supervisor

Jeffrey J. Koelewyn, Inorganics Manager

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942684

Lab ID Number

: 2684-11

Project Number

: None

Sample Description: D-31

Date Sampled : 09/09/94 Time Sampled : 1325 Date Received : 09/09/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	130	mg/L	1
EPA 6010	Calcium (Ca)	24	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

μmhos/cm: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman

Inorganics Manager

LABORATORIES

no City Water Division

: Doug Kirk

E. University Avenue

no, CA 93703

Number

: Ch942684

ID Number

: 2684-12

ect Number

: None

le Description: D-28

Date Sampled : 09/09/94

Time Sampled

: 1340

Date Received : 09/09/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

ethod No.	Analyte	Results	Units	DLR
A 310.1	Alkalinity (CaCO3)	170	mg/L	1
A 6010	Calcium (Ca)	32	mg/L	

one Detected

Std: Standard Units

 μ mhos/cm: Micromhos per Centimeter at 25°C

ligrams per Liter

DLR: Detection Limit for the Purposes of Reporting.

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

thia Pigman, QA/QC Supervisor

fun h Mullim Effrey J. Koelewyn, Inorganics Manager

BSK LABORATORIES

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942684

Lab ID Number

: 2684-13

Project Number

: None

Sample Description: D-156

Date Sampled : 09/09/94

Time Sampled : 1350

Date Received : 09/09/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	140	mg/L	1
EPA 6010	Calcium (Ca)	27	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

μmhos/cm: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman, QX/QC Supervisor

Jeffrey J. Koelewyn Inorganics Manager

o City Water Division

Doug Kirk

E. University Avenue

o, CA 93703

: 09/09/94 Date Sampled

Time Sampled

: 09/09/94 Date Received

Report Reissue Date: 11/02/94

Number

: Ch942684

D Number

: 2684-14

ect Number

: None

e Description: D-158

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

	Analyte	Results	Units	DLR
A 310.1 A 6010	Alkalinity (CaCO3) Calcium (Ca)	150 28	mg/L mg/L	0.1

one Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

 $\mu \mathrm{mhos/cm} \colon \mathrm{Micromhos} \ \mathrm{per} \ \mathrm{Centimeter} \ \mathrm{at} \ 25\,^{\circ}\mathrm{C}$ ot. Analyzed

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

igrams per Liter

Supervisor :hia Pigman, QA/

n, Inorganics Manager

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Time Sampled Date Received

Date Sampled

: 09/09/94

: 1425

: 09/09/94 Report Reissue Date: 11/02/94

Case Number : Ch942684

Lab ID Number Project Number : 2684-15

Sample Description: D-159

: None

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	150	mg/L	0.1
EPA 6010	Calcium (Ca)	30	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

μmhos/cm: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

mg/L: Milligrams per Liter

Cynthia Pigman

BSK LABORATORIES

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942684

Lab ID Number

: 2684-16

Project Number

: None

Sample Description: D-155

Date Sampled : 09/09/94

Time Sampled : 1440

Date Received : 09/09/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	85	mg/L	0.1
EPA 6010	Calcium (Ca)	17	mg/L	

ND: None Detected

mg/L: Milligrams per Liter

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

 $\mu \mathrm{mhos/cm}$: Micromhos.per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman, QA/QC Supervisor

July J. Mollowyn, Inorganics Manager

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Date Sampled Time Sampled : 1455

: 09/09/94

Date Received

: 09/09/94

Report Reissue Date: 11/02/94

Case Number

: Ch942684

Lab ID Number

: 2684-17

Project Number

: None

Sample Description: D-68

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	120	mg/L	1
EPA 6010	Calcium (Ca)	24	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

 μ mhos/cm: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

A N A L Y T I C A L LABORATORIES

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942692

Lab ID Number

: 2692-1

Project Number

: None

Sample Description: D-79

Date Sampled

: 09/12/94

Time Sampled

: 0920

Date Received

: 09/12/94 Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	95	mg/L	0.1
EPA 6010	Calcium (Ca)	21	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

 $\mu \mathrm{mhos/cm} \colon \mathrm{Micromhos} \ \mathrm{per} \ \mathrm{Centimeter} \ \mathrm{at} \ 25^{\circ}\mathrm{C}$

Exceptional sample conditions or matrix interferences

may result in higher detection limits. .

BSK A N A L Y T I C A L LABORATORIES

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942692

Lab ID Number

: 2692-2

Project Number

: None

Sample Description: D-116

Date Sampled

: 09/12/94

Time Sampled

: 1000

Date Received

: 09/12/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	110	mg/L	1
EPA 6010	Calcium (Ca)	24	mg/L	

ND: None Detected

mg/L: Milligrams per Liter

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

 μ mhos/cm: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman, QA/QC Supervisor

office, I flock with

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942692

Lab ID Number

: 2692-3

Project Number

: None

Sample Description: D-69

Date Sampled : 09/12/94

Time Sampled : 1020

Date Received : 09/12/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte .	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	120	mg/L	0.1
EPA 6010	Calcium (Ca)	24	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

 μ mhos/cm: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman, QA/QC Supervisor

effrey J. Koelewyn, Thoraspice Managor

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942692

Lab ID Number

: 2692-4

Project Number

: None

Sample Description: D-117

Date Sampled : 09/12/94

Time Sampled

: 1040

Date Received

: 09/12/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte .	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	110	mg/L	0.1
EPA 6010	Calcium (Ca)	21	mg/L	

ND: None Detected

mg/L: Milligrams per Liter

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

μmhos/cm: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Figman, QA/QC Supervisor

Jeffrey J. Koelewyn, Inorganics Manager

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942692

Lab ID Number

: 2692-5

Project Number

: None

Sample Description: D-70

Date Sampled : 09/12/94

Time Sampled

: 1100 : 09/12/94

Date Received

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	95	mg/L	1
EPA 6010	Calcium (Ca)	20	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

 $\mu \mathrm{mhos/cm}$: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman, QA/QC Supervisor

Jeffrey J. Koelewyn, Inorganics Manager

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942692

Lab ID Number

: 2692-6

Project Number

: None

Sample Description: D-76

Date Sampled : 09/12/94

Time Sampled : 1145

Date Received : 09/12/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	120	mg/L	1
EPA 6010	Calcium (Ca)	26	mg/L	

ND: None Detected

mg/L: Milligrams per Liter

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

μmhos/cm: Micromhos per Centimeter at 25°C Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942692

Lab ID Number

: 2692-7

Project Number

: None

Sample Description: D-126

Date Sampled

: 09/12/94

Time Sampled

: 1230

Date Received

: 09/12/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	95	mg/L	1 0.1
EPA 6010	Calcium (Ca)	20	mg/L	

ND: None Detected

mg/L: Milligrams per Liter

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

 $\mu \mathrm{mhos/cm}$: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Koelewyn, /Inorganics Manager

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942692

Lab ID Number

: 2692-8

Project Number

None

Sample Description: D-130

Date Sampled : 09/12/94

Time Sampled : 1315

Date Received : 09/12/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	130	mg/L	1
EPA 6010	Calcium (Ca)	25	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

 $\mu \mathrm{mhos/cm} \colon \mathrm{Micromhos} \ \mathrm{per} \ \mathrm{Centimeter} \ \mathrm{at} \ 25^{\circ}\mathrm{C}$

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman, QA/QC Supervisor

effrey J. Koelewyn, Ironganics Managor

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942684

Lab ID Number

: 2684-1

Project Number

: None

Sample Description: D-36

Date Sampled : 09/09/94

Time Sampled

: 0835 Date Received : 09/09/94

Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	100	mg/L	1
EPA 6010	Calcium (Ca)	24	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

μmhos/cm: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942684

Lab ID Number

: 2684-2

Project Number

: None

Sample Description: D-133

74/CT

Date Sampled : 09/09/94

Time Sampled : 0855

Date Received : 09/09/94 Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	89	mg/L	1 0.1
EPA 6010	Calcium (Ca)	17	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

μmhos/cm: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman, QA/QC Supervisor

beffrey J. Koelewyn, Inorganics Manager

BSK A N A L Y T I C A L LABORATORIES

Fresno City Water Division

Attn: Doug Kirk

1910 E. University Avenue

Fresno, CA 93703

Case Number

: Ch942684

Lab ID Number

: 2684-3

Project Number

: None

Sample Description: D-134

ند.

Date Sampled : 09/09/94

Time Sampled : 0915

Date Received : 09/09/94 Report Reissue Date: 11/02/94

Sample Type: LIQUID

Analyses for Selected Inorganic Constituents

Method No.	Analyte	Results	Units	DLR
EPA 310.1	Alkalinity (CaCO3)	83	mg/L	1
EPA 6010	Calcium (Ca)	18	mg/L	

ND: None Detected

Std: Standard Units

DLR: Detection Limit for the Purposes of Reporting.

--: Not Analyzed

mg/L: Milligrams per Liter

μmhos/cm: Micromhos per Centimeter at 25°C

Exceptional sample conditions or matrix interferences

may result in higher detection limits.

Cynthia Pigman, QA/QC Supervisor

effice J. Koelewyn, Inorganics Manager

Sample Activity Form

City of Fresno, Water Division 1910 E. University Ave., 93703

AM PM		
re 9/9/94Time :-		
Dare 9	AM PM	No of Samples
)(J St L/ Times.	2
shed by	Date: 9 19	rence:
(S S Relinquish	Medra	Lab Refere
1 CCRRS	MUCS) 10	CA ASC
Sampled by	Received by	Laboratory:

14	ОТНЕВ	X	X	X	X	X	X	X	X	X	X	X	\bigvee	X
CA	ЯЗНТО	X	X	X	X	X	X	X	X	X	X	X	Z	X
	ASBESTOS													
	ИОДАЯ													
	ачнла-еяр													
	RA-QJ													
	N													
	7									4				
ı	l•Đ													
	204 LD													
	S'MHT													
	099													
	679													
	248													
	748													
	1.153													
	225													
	1.212													
	A802													
	805													
	703													_
	505			_										_
	P09												-	_
	502,2		_			_			_					_
	Location Description	D-36	12-133	D-134	5-87	D-81	15-34	D-202	12-129	181-0) - ((0-31	D-12B	D-156
	Туре	W	M	ž	X	S	W	N	M	1//	\leq	\×	\leq	\lesssim
	ТІте	8,35	8155	9:15	10:15	シブラ	11:45	121,00	12:30	12:50): 	1.25	こかこ	: S-C
	Date	9/9/94	9/194	9-9-94	16-6-6	9-9-94	9-9-94	9-9-94 121,00	9-9-94 12,30	9-9-94 12:50	10-6-6	10-6-6d	9-9-94	Mo-0-5
	*											10.79		

LD-AR Low Detection Arsenic LD-504 Low Detection DBCP BSK Log #: Containers.

S

h:\prd\wtqua\coc-1

G-1 General Mineral, Physical, Inorganic Chemical F Fluoride N Nitrates

Sample Activity Form

City of Fresno, Water Division 1910 E. University Ave., 93703

1	ادر د	
KUNI	HYTH	ВЭНТО
. **	10740	ВЭНТО
_		SOTSBEST
PM		ИОДАЯ
АМ		A9HJA-2R
		AA-QJ
		N
		4
TIm		l-9
7.94 Time		20¢ FD
6		2'MHT
		. 023
ate G		679
Date_ PM		848
AM ples		743
A mm		1.153
AM Of Samples		222
ů, ů		1.212
		A802
Time:		808
[[] [209
		505
		20 4
5		5.202
Relinquished by Date: C		Location Description
Concenter 11902) D		Туре
	_	Time
Sampled by Z Received by Z Laboratory:	Sample Detail	Date
Sar Rec Lab	Sam	*
11		

ЯЗНТО	X	X	X	X		Γ		T-		
ОТНЕВ	X	X	X	X						
SOTSBESA		,								
ИОДАЯ										-
АЧНЈА-2ЯЭ										_
AA-QJ										
N										
3										
1-5										
204 LD										
2'MHT										
099										
679										
848										
743										
1.168										
225										
1.212										
A802										
808										
209										
505										
504										
502.2										
Location Description	8-11-0	051-0	251-0	89 - Q						
Туре	Ź	*	$\langle \langle \rangle$	VV						
Time	50:60 3:02	52:2 16-6-6	04.2 140-6-6	0-6-94 2:55						
Date	1-9-94	4-6-64	10-55	0-6-64						
*							 /			

LD-AR Low Detection Arsenic LD-504 Low Detection DBCP

G-1 General Mineral, Physical, Inorganic Chemical F Fluoride N Nitrates

BSK Log #: Containers:

h:\prd\wtqua\coc-1